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The ‘charge-flipping’ method proposed by Oszlányi & Süto�� [Acta Cryst. (2004),

A60, 134–141] has been extended to include the direct-methods tangent formula

within the iterative process. The tangent formula acts as a corrective influence

allowing for solutions at resolutions poorer than 1 Å. The resulting algorithm

solves difficult structures in minutes rather than days or not at all. Modifications

include (i) flipping a percentage of charge rather than charge below a threshold

value and critically (ii) dampening the magnitude of charge above the threshold;

this impedes tangent-formula solutions comprising one or two very intense

peaks in the electron density which is commonly known as the ‘uranium atom

solution’. For data at poor resolution, an alternate charge-flipping regime avoids

uranium atom solutions by truncating electron-density pixels that are greater

than half the maximum value.

1. Introduction

The iterative phasing process of ‘charge flipping’ by Oszlányi

& Süto�� (2004) solves easy structures in a short time period;

this was demonstrated on observed data by Wu et al. (2004).

Charge flipping has also been used to reconstruct incom-

mensurately modulated structures by Palatinus (2004),

demonstrating the fact that charge flipping is not confined to

three dimensions. Baerlocher et al. (2007) included histogram

matching (Zhang & Main, 1990) in a charge-flipping process

modified for powder diffraction data.

Charge-flipping procedures solve structures in space group

P1 as this is the only space group with complex phases for all

reflections which allows for incremental phase changes.

Charge flipping alone however does have problems solving

difficult structures where the ratio of intense to weak reflec-

tions is low or when the resolution of the data is poor. Oszlányi

& Süto�� (2005) reported that for simulated data hundreds of

thousands of iterations were required for the two difficult

structures of agazud (Alexander et al., 2002) and 1a7y

(Schaefer et al., 1998) with rates of success of 50 and 25%,

respectively. These two structures as well as four others with

space groups other than P1 are analyzed in this paper with

regard to solving the structures at good resolution and at poor

resolution.

The present charge-flipping algorithm includes the tangent

formula (Karle & Hauptman, 1956) within the iterations of

charge flipping in a manner that perturbs the process in a

positive manner. This is demonstrated on data at poor reso-

lution, worse than 1 Å, whereby charge flipping alone oper-

ating on phases at their optimum values often results in an

increase in R factors and hence divergence. Inclusion of the

tangent formula with an optimum number of Eh values and

corresponding triplet phase relationships prevents divergence.

Both the tangent formula and charge flipping operate on

normalized structure factors Eh ¼ jFh;obsj=ð
P

i f 2
i Þ

1=2, where

jFh;obsj are the observed structure-factor moduli and f i are the

atomic scattering factors and the summation is over the atoms

in the unit cell.

2. The algorithm

The basic algorithm is presented in Table 1; it adheres to the

charge-flipping process of Oszlányi & Süto�� (2004) except for

the steps marked as modifications. The modifications are

designed to overcome incorrect tangent-formula solutions

where high electron densities are obtained around a few grid

Table 1
Charge-flipping algorithm incorporating the tangent formula with control
parameter set for the difficult structures of agazud and 1a7y.

1 Randomly choose reflection phases between 0 and 360�.
2† Set 50% of structure factors with the smaller Eh values to zero

and set the moduli of other structure factors to observed
values. Set non-observed structure factors including F000
to zero.

3 Inverse Fourier transform structure factors to obtain electron
densities.

4† Scale electron densities � such that the maximum equals 1.
5† Determine the threshold charge � such that 60% of charge lies

below �.
6 For � < � set � = ��.
7† For � � � set � ¼ �þ ð�� �Þ� with � = 1

2.
8 Fourier transform to obtain structure factors.
9† Add to phases with the highest Eh values a fraction of the

difference between the values determined by the tangent
formula and present values.

10 Continue from step 2.

† Modifications to the Oszlányi & Süto�� (2004) algorithm.



points with the rest being of low intensity; this effect is

commonly known as the ‘uranium atom solution’ (Sheldrick,

1997). The control parameter settings in Table 1 are set for the

solution of the difficult structures of agazud and 1a7y. Modi-

fications are described where necessary.

Step 2 removes weak reflections from the system by setting

50% of them with smaller Eh values to zero. This perturbation

reduces the risk of the system being trapped within a local

minimum. Oszlányi & Süto�� (2005) reported this modification

as being less efficient than offsetting weak reflection phases by

�/2. This offsetting of weak reflection phases increases

perturbation which increases the amount of parameter space

searched. In the present algorithm, however, increasing or

decreasing perturbation is instead performed by varying � of

step 7. Setting F000 to zero, step 2, was also used by Palatinus

(2004) as opposed to a floating F000 as used by Oszlányi &

Süto�� (2004).

Wu et al. (2004) favored flipping a fraction of charge rather

than charge below a chosen threshold charge, �. This approach

has been adopted in steps 5 and 6; it ensures that the amount

of charge flipped is independent of the existence of uranium

atom regions. In the present algorithm, 60% of charge is

flipped. During the iterative process of the Oszlányi & Süto��
(2004) algorithm for the structure of agazud, a � set at 0.08%

of the maximum electron density flips approximately 80% of

charge and 88% at convergence. Flipping less charge poten-

tially means that more difficult structures can be solved.

Changing the electron densities in the manner shown in

steps 4 and 7 decreases strong intensities more than small

intensities and hence reduces the occurrence of uranium atom

regions. � corresponds to a real number; a value of 1
2 seems to

produce the best results for difficult structures. At � = 1
2, a

Gaussian region of charge is modified to another Gaussian

with a full width at half-maximum that is
ffiffiffi
2
p

times that of the

original. This introduces a temperature-like effect into the

structure factors with added complications due to flipping;

the result is higher R factors. R factors reported in this

paper first scale calculated structure factors such thatP
hkl jFcalc;hklj ¼

P
hkl jFobs;hklj.

Step 7 also introduces a significant amount of perturbation

into the system; this added perturbation reduces the need for a

high threshold. Tests indicate however that high threshold

values where 80% of charge is flipped also lead to the correct

solution.

For poor-resolution data or in cases where the amount of

perturbation is too much, the charge-flipping regime of steps 5,

6 and 7 are replaced by equation (1).

� ¼ �j j ð1aÞ

� ¼
j�j; for j�j< 1=2

1=2; for j�j � 1=2:

�
ð1bÞ

Equation (1b) truncates high electron-density pixels that are

greater than half the maximum electron density. The effect is

to reduce the occurrence of uranium atom solutions whilst

increasing R factors at convergence marginally. The reason R

factors increase by a small amount is because relatively few

pixels are greater than half the value of the maximum pixel.

Note that data at poor resolution even for simple structures

produce uranium atom solutions more often than data at good

resolution; this is demonstrated in the Analysis section.

In step 9, a certain number of phases produced by charge

flipping �h;cf are modified to produce �h;new as shown in

equation (2). This incorporates the tangent formula and the

reliability factor Mh (Burla et al., 1999).

�h;new ¼ �h;cf þ �hð�h;tf � �h;cf Þ ð2Þ

tanð�h;tf Þ ¼ Th=Bh

Th ¼
P

k

EhEkEh�k sin �k þ �h�kð Þ

Bh ¼
P

k

EhEkEh�k cos �k þ �h�kð Þ

�h ¼ Mh=Mh;max; Mh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

h þ B2
h

p
:

The use of Eh implies atomicity for which the number of atoms

and their types within the unit cell are required. Owing to the

present approximate nature of the use of the tangent formula,

it is sufficient to simply know the type of structure, light

element for example, and thus
P

i f 2
i can typically be

approximated. Mh;max correspond to the maximum reliability

factor produced in the previous iteration resulting in �h

varying between 0 and 1 approximately. Unreliable phases

with small �h are changed by small amounts. �h;new are

calculated starting with the highest �h down to the lowest with

�k and �h�k of the triplet relations being updated.

Phases produced by the tangent formula �h;tf are not

directly used but only a fraction of the difference �h;tf � �h;cf .

Thus the tangent formula is only solved partially. Tangent

formulae for approximately one third of the highest Eh values

are included each with triplet phase relations corresponding

to those with the highest EhEkEh�k values. Inclusion of 30

triplets per Eh increases the computational time by approxi-

mately 10 to 15% for an electron-density grid comprising

32� 32� 64 points. An optimum number of triplets per Eh

has not been thoroughly investigated; in cases where the

resolution of the data is good, 30 triplets per Eh seems to be

adequate. For poor-resolution data, up to 200 seem necessary.

The quantity �sum of equation (3) provides means of

detecting uranium atom solutions.

�sum ¼
1

Nh

XNh

h¼1

�h: ð3Þ

With � = 1 and for difficult structures, �sum rises to high values

from a relatively low value in a matter of a few iterations. The

rise is approximately two to three times that of its value at

convergence. This is in contrast to charge flipping without the

tangent formula and � = 1 which produces an �sum of ~90% of

the value at convergence.

2.1. Discussion of control parameters

The control parameters of Table 1 are the percentage of

charge to flip (step 2), the value set for � (step 7), the

percentage of reflections considered weak, the number of Eh

values (step 9) and the number of triplets per Eh value. Note
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that both � and the percentage of charge flipped are redun-

dant in the case of using the charge-flipping regime of equa-

tion (1).

It is desirable to minimize the number of control parameters

for successful use of the algorithm. In the Analysis section, a

number of investigations have been performed in order to

identify optimum values; it is not exhaustive particularly for

the case of data at poor resolution where only a limited

number of investigations has thus far been performed.

2.2. Discussion of perturbations and R factors

Perturbations that increase R factors both prior to and at

convergence are the flipping of charge (step 2) and the setting

of � to values less than 1 (step 7). These perturbations increase

randomness in the system and therefore can inhibit the

identification of solutions where the difference between R

factors prior to and at convergence is too small to be recog-

nized. The use of the tangent formula (step 9) is a positive

perturbation where randomness is reduced; this is demon-

strated in the Analysis section below.

The data analyzed in the present work at good resolution all

exhibit measurable differences in R factors prior to and at

convergence with 1a7y exhibiting the least amount of contrast.

It is anticipated therefore that the solving of even more

difficult structures may require reduction of some of the

perturbations by, for example, increasing � to values closer to

1, by flipping less charge, by instead using the charge-flipping

regime of equation (1) or by reducing the percentage of

reflections considered weak.

3. Analysis

The present algorithm as implemented in the programs

TOPAS-Academic V4.1 (Coelho, 2007) and TOPAS V4.1

(Bruker AXS, 2004) has been used for the following investi-

gations. Structures investigated are shown in Table 2. E values

are used in all cases for charge flipping and the tangent

formula. Where the tangent formula is used, 3000 Eh values

are included each with 30 triplet relations unless otherwise

stated.

3.1. Range of convergence

The range of convergence (ROC) can be defined as the limit

to which phases can randomly be varied from their true values

before charge flipping fails to bring them back within a certain

terminating criterion. The criterion used in the present

analysis is failure to decrease the R factor for 20 consecutive

iterations; it also sets � = 1 and 20% of reflections are

considered weak. Phases start at true values corresponding to

a particular enantiomorph; after the addition to each phase

of a random amount with each phase receiving different

amounts, the starting enantiomorph should still be favored

except for the case of adding random amounts corresponding

to a mean phase error of �90�. Even if a different enantio-

morph is realized, the ROC analysis considers this a success.

The success rate is defined as the percentage of times a correct

solution is found.

Without the tangent formula and for the 1a7y structure at

0.8 Å resolution and for simulated data using atomic scat-

tering factors and no temperature factors, a 100% success rate

is observed when a mean phase error of�75� is introduced. At

a mean phase error of �72.5�, only a 6% success rate is

observed. Thus the ROC here corresponds to ~�75� where

100% success is observed. This demonstrates that charge

flipping has a large range of convergence and that success is

diminished sharply within a few degrees of the mean phase

error. A 100% success rate at a mean phase error of �75�,

however, means that phases randomly chosen will have 1 in 6

outside the ROC.

At 1 Å resolution, the ROC drops to ~�67.5�, where a

100% success rate is observed. At �72.5�, a success rate of

~20% is observed. Inclusion of the tangent formula as

described in equation (2) and again with � = 1 increases the

ROC by ~2.5�.

At such large ROC’s, it is tempting to try and find the lowest

R factors by starting a multitude of processes, each starting

with random phases and each allowed to continue for a rela-

tively small number of iterations with a terminating criterion

as described above. Implementing this strategy proved ineffi-

cient in finding the lowest R factors in comparison to pertur-

bations introduced at the iteration level.

Randomly assigning phases and starting the process without

the tangent formula produced an average change in phase

after matching from one iteration to another for the highest

100 Eh reflections of ~28�. Monitoring the change in phase that

the tangent formula equation (2) would have introduced but

not actually enforcing the change sees the 28� reduce to ~12�.

In other words, the tangent formula seems to want to reverse

the change of the charge-flipping step. Actually enforcing the

change reduces the average phase change down to ~9�. The

tangent formula therefore reduces perturbation in the system.

The additional perturbations brought on by setting � = 1
2 and

of designating 50% of reflections as weak compensates for the

lack of perturbation when the tangent formula is used.

3.2. Using the tangent formula on simulate data – agazud and
1a7y

For comparison with the work of Oszlányi & Süto�� (2005),

simulated data are analyzed for the agazud and 1a7y struc-

tures. Here however simulated data at 1 Å are used rather
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Table 2
Structures investigated including references, number of non-H atoms in
the asymmetric unit and space group.

No. Reference No. of atoms Space group

1, agazud Alexander et al. (2002) 219 P1
2, 1a7y Schaefer et al. (1998) 314 P1
3 Li et al. (2003b) 43 P�11
4 Fukuoka et al. (2000) 17 P41212
5 Karakurt et al. (2003) 23 C2/c
6 Li et al. (2003a) 53 P�11



than at 0.8 Å. This corresponds to 7754 reflections for agazud

and 12304 for 1a7y. This is approximately half the number of

reflections at 0.8 Å of 15138 and 24063, respectively. The

simulated data included atomic scattering factors and zero

temperature factors.

Executing the algorithm of Table 1 100 times for each

structure was 100% successful with agazud, taking 478 itera-

tions on average and 1a7y 585; this corresponds to 23 and 28 s

respectively on a 3 GHz personal computer. The maximum

number of iterations was 4273 and 3414, respectively. Without

the modification shown in Table 1, neither structure could be

solved at 1 Å resolution in 200000 iterations.

The perturbations introduced in Table 1 increase the R

factor, in particular in step 7. The R factor for agazud is ~0.75

prior to convergence and ~0.57 at convergence; these values

do not include weak-reflection structure factors that are set to

zero. Fig. 1 however shows that there is ample contrast in the R

factors. At convergence, the average difference between the

phases of the strongest 200 reflections and their true values

after matching is 24�. This is small in comparison to the ROC

and thus relaxing the perturbations immediately reduces the

R factor.

3.3. Using the tangent formula on real data – 1a7y

There are 14126 observed reflections for the structure 1a7y

at a resolution of 0.940 Å. In the present analysis, a resolution

of 0.994 Å is chosen with 12085 reflections and a corre-

sponding grid size of 32� 32� 64. The contrast between the

R factors at convergence and prior to convergence is reduced

in the real data and the strategy adopted is to detect a drop in

the R factors of more than 0.05. At this stage, the perturba-

tions of steps 2 and 7 are removed whereby weak reflection

intensities are set to observed values and � is set to 1. Fig. 2

shows a typical solution with the point of perturbation

removal indicated. With the perturbations, the electron

density is not sharp; without them, the electron density is

clearly recognizable as the correct solution. After matching

the highest 100 Eh phases with the true values, an average

difference of 26� is obtained.

The algorithm of Table 1 was executed 120 times with the

1a7y structure being solved 100% of the time. Fig. 3 shows a

frequency distribution for the number of iterations required

showing a peak at around 600. Without the tangent formula

and with � = 1, a solution was not obtained in 100000 itera-

tions.

Fig. 4 shows �sum of equation (3) as a function of iteration

for 1a7y for the case of � = 1 and � = 1
2. For � = 1

2 and with the

tangent formula (step 9 of Table 1), approximately the same

�sum is seen as for � = 1 without the tangent formula. At � = 1

and with the tangent formula, �sum rises rapidly to a high value

indicating a uranium atom solution; the same situation is

observed for the agazud structure. Thus use of the tangent
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Figure 1
Solution to simulated data for agazud at 1 Å using the algorithm of
Table 1.

Figure 2
Solution to observed data at 1 Å for 1a7y using the algorithm of Table 1.
The plot marked ‘Eq. (1b) used’ replaces the steps steps 5, 6 and 7 with
the flipping regime of equation (1b) with 200 triplets per Eh value.

Figure 3
Number of iterations required to solve 1a7y plotted as a distribution
comprising 120 executions of the algorithm of Table 1.



formula on these structures requires an additional perturba-

tion, that of setting � = 1
2 to prevent the formation of uranium

atom solutions.

For � = 1, �sum can be kept at reasonable levels for a while

by increasing the amount of charge flipped. This increases

perturbation due to flipping and decreases perturbation due to

setting � = 1. Often, however, a uranium atom solution is

finally realized and the R-factor plot resembles a typical

convergence. Such a case for 1a7y where 85% of charge is

flipped is shown in Fig. 5; the electron density confirmed a

uranium atom solution.

Alternatively, the flipping regime of equation (1b) can

instead be used replacing steps 5, 6 and 7 of Table 1. This

increases the contrast in R factors as seen in the plot marked

‘Eq. (1b) used’ of Fig. 2. Because of the ability of equation (1b)

to reduce uranium atom solutions, the number of triplets per

Eh have been increased to 200. Equation (1b), however,

introduces little perturbation and out of 20 different charge-

flipping processes 6 became trapped within a local parameter

space. Further perturbations may be necessary for difficult

structures in order to search more of parameter space, for

example, by offsetting the phases of weak reflections by �/2

and not setting their intensities to zero (Oszlányi & Süto��,

2005). Such a perturbation however decreases the contrast in

R factor prior to and at convergence.

3.4. Changing the resolution and the number of triplets –
1a7y

Fig. 6 shows R-factor results with and without the tangent

formula obtained for real data for 1a7y at 1.2 Å resolution

with phases starting at their optimum values and with 20% of

reflections considered weak; this corresponds to 6958 reflec-

tions with 5566 of them considered not weak. Without the

tangent formula, the R factor diverges for both � = 1 and for

� = 1
2. This result indicates that charge flipping alone cannot

solve the structure of 1a7y at 1.2 Å.

With the tangent formula and 3000 Eh values each with 30

triplet relations, the R factor also increases for both � = 1 and

� = 1
2. In the case of � = 1, a uranium atom solution is quickly

realized. In the case of � = 1
2, a uranium atom solution is not

realized but the solution is quickly lost with the R factor rising

to 0.78. Increasing the number of triplets per Eh to 200

produces the plots marked as ‘Tangent’ in Fig. 6. A uranium

atom solution is realized for � = 1 but not for � = 1
2. In fact, at

� = 1
2, the solution is maintained as a function of iteration, and

visual inspection clearly shows the solution with almost all

atoms correctly picked.

Using the flipping regime of equation (1b) with 200 triplets

per Eh and performing a ROC analysis produced results

shown in Fig. 7. Here five convergences are shown: at the start

of each the phases are offset from their optimum values by an

average amount of �60�. At �60�, convergence is observed

100% of the time and, at �65�, 30% of the time. Thus, the

ROC is significantly smaller than at the high resolution of

0.94 Å, which produces a ROC between�72.5 and�75�. Fig. 7

also shows a superimposed plot marked ‘Random start’, which

shows an equation (1b) process initiated with phases randomly

chosen. The gap between this plot and the minima of the ROC

plot is the contrast in the R factors which is appreciable at

~0.18. This ROC analysis is significant as it demonstrates that

with enough computing power the flipping regime of equation
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Figure 4
�sum as a function of iteration for various cases of � with and without the
use of the tangent formula of step 7, Table 1.

Table 3
Resolution used in poor-resolution analysis, number of reflections after
converting to space group P1, number of Eh values and corresponding
number of triplets per Eh; 50% of reflections considered weak.

No.
Resolution
(Å)

No. of
reflections

No. of Eh

values
No. of
triplets per Eh

Grid size
(pixels)

3 1.4 1122 300 50 32�64�64
4 1.2 1743 500 200 128�32�64
5 1.3 4261 1500 50 64�64�64
6 1.6 981 500 200 32�64�64

Figure 5
R factors, displaying what looks like a solution but is in fact a uranium
atom solution.



(1b) together with the tangent formula can solve 1a7y at 1.2 Å.

It is worth noting that a solution was not observed after

continuing the ‘Random start’ plot for an additional 50000

iterations. This could be due to the system being caught in a

local region of parameter space. A better strategy, not inves-

tigated, may be a periodic restart with phases randomly

chosen.

3.5. Poor-resolution analysis using real data

Charge flipping when applied to simple structures achieves

convergence in a few iterations (Oszlányi & Süto��, 2005).

Structure 3 of Table 2 at 0.8 Å is solved with � = 1 and without

the use of the tangent formula in 23.5 iterations on average.

With the tangent formula and for � = 1 and � = 1
2, the average

drops to 14.6 and 16.3 iterations, respectively. Interestingly,

there is no need to set � = 1
2 as �sum remains unchanged with � =

1. Thus the behavior of �sum can determine whether a structure

is difficult and whether � should be reduced from 1.

At 0.8 Å resolution, structures 3 to 6 of Table 2 are solved

with � = 1 and without the tangent formula and in a matter of

minutes or seconds. In reducing the resolutions to those shown

in Table 3, charge flipping alone does not produce electron

densities that are discernible to a high or even moderate

degree. The electron densities can however be sharpened

significantly by using the tangent formula with the charge-

flipping regime of equation (1). In Table 4, the last four

columns show the results with the control parameters as

described in Table 3 for the regime of equation (1) and with

and without the tangent formula. The number of triplets per

Eh was determined by increasing the number of triplets in

steps of 50 until the lowest R factor was obtained. The grid

sizes shown in Table 3 are determined such that they are a

power of 2 whilst keeping the grid spacing less than 0.4 Å.

The second and third R-factor columns (columns 4 and 5)

show the similarity in R factors between the regimes of

equation (1) demonstrating the fact that equation (1b)

increases R factors marginally. With the tangent formula and

the regime of equation (1a), structures 3, 4 and 6 produce

uranium atom solutions within a small number of iterations.

With the regime of equation (1b), the uranium atom solutions

are suppressed; in addition, R factors are significantly better

than for the case without the tangent formula. No uranium

atom solutions were observed for structure 5 and thus

equation (1a) is used with the R factor significantly better for

the case with the tangent formula.

Acta Cryst. (2007). A63, 400–406 A. A. Coelho � A charge-flipping algorithm 405

research papers

Figure 7
R-factor plots for real data for 1a7y at 1.2 Å for the flipping regime of
equation (1b). The peaks on the plot marked ‘ROC analysis’ correspond
to offsetting the phases a random amount of �60� on average. The plot
marked ‘Random start’ was initiated with random phases.

Figure 6
R-factor plots for real data for 1a7y at 1.2 Å resolution with phases
starting from their optimum values for cases of � = 1, � = 1

2 and with and
without the tangent formula. 20% of reflections considered weak. 3000 Eh

values used each with 200 triplet relations.

Table 4
Lowest R factors recorded for poor-resolution analysis after 2000 iterations for two charge-flipping regimes each without (columns marked No TF) and
with the tangent formula (columns marked TF).

Comparison details, no tangent formula; all data used R factors from resolutions as given in Table 3

All data R factors calculated at resolutions given in Table 3 � = |�| � = min(|�|, 0.5)

No. Resolution (Å) R factor � = |�| � = min(|�|, 0.5) No TF TF No TF TF

3 0.78 0.32 0.35 0.34 0.46 0.72† 0.51 0.44
4 0.84 0.39 0.38 0.39 0.59 0.73† 0.63 0.54
5 0.66 0.46 0.45 0.47 0.62 0.50
6 0.84 0.35 0.33 0.34 0.54 0.73† 0.58 0.43

† Uranium atom solutions realized.



4. Conclusions

Techniques developed for detecting and avoiding uranium

atom solutions have allowed the use of the tangent formula

within a charge-flipping iteration. This extension to charge

flipping seems to solve difficult structures at good resolution in

a short time period. With the number of triplets per Eh opti-

mized and further adjustments to control parameters, the use

of the tangent formula can prevent divergence of R

factors for data at poor resolution. A number of additional

control parameters have been introduced in comparison

to the original charge-flipping algorithm of Oszlányi &

Süto�� (2004) and even though many of them have been

investigated there remain a number of unsolved matters.

The most important being the determination of the

optimum amount of perturbation and the type of

perturbation whereby parameter space is searched effi-

ciently whilst maintaining contrast in R factors sufficient

enough to identify correct solutions. Additionally, further

analyses regarding the use of negative quartets may prove

worthwhile.

Note added in proof: Since submission of the manuscript,

another paper published by Oszlányi & Süto�� (2007) has

described large increases in the performance of charge flipping

by using normalized structure factors and accurate threshold

values.
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